Synthetic data generation method for data-free knowledge distillation in regression neural networks

نویسندگان

چکیده

Knowledge distillation is the technique of compressing a larger neural network, known as teacher, into smaller student, while still trying to maintain performance network much possible. Existing methods knowledge are mostly applicable for classification tasks. Many them also require access data used train teacher model. To address problem regression tasks under absence original training data, previous work has proposed data-free method where synthetic generated using generator model trained adversarially against student These and their labels predicted by then In this study, we investigate behavior various generation propose new strategy that directly optimizes large but bounded difference between Our results on benchmark case study experiments demonstrate allows learn better emulate more closely.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-Free Knowledge Distillation for Deep Neural Networks

Recent advances in model compression have provided procedures for compressing large neural networks to a fraction of their original size while retaining most if not all of their accuracy. However, all of these approaches rely on access to the original training set, which might not always be possible if the network to be compressed was trained on a very large dataset, or on a dataset whose relea...

متن کامل

Estimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?

Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...

متن کامل

A New Nonparametric Regression for Longitudinal Data

In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...

متن کامل

SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS 1 Data-free Parameter Pruning for Deep Neural Networks

Deep Neural nets (NNs) with millions of parameters are at the heart of many stateof-the-art computer vision systems today. However, recent works have shown that much smaller models can achieve similar levels of performance. In this work, we address the problem of pruning parameters in a trained NN model. Instead of removing individual weights one at a time as done in previous works, we remove o...

متن کامل

Spatial Correlation Testing for Errors in Panel Data Regression Model

To investigate the spatial error correlation in panel regression models, various statistical hypothesizes and testings have been proposed. This paper, within introduction to spatial panel data regression model, existence of spatial error correlation and random effects is investigated by a joint Lagrange Multiplier test, which simultaneously tests their existence. For this purpose, joint Lagrang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2023

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2023.120327